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o Structures of Polymers in the Condensed State




Condensed States of Polymers

® polymer phases determined by chemical constitution, processing history, external parameters (T, solution)

viscous liquids amorphous glasses semi-crystalline elastomers
(solutions, polymer melts) or thermosets

KA

S

easy chain movement only local movement of restricted chain movement by restricted chain movement
chain segments crystallization by cross-links
silicones (PDMS): polystyrene: nylon 6,6: polyisoprene:
Tg - - 123 °C Tg = 100 °C Tg o '50 °C Tg o '73 °C
Tm=-40°C Tm=265 °C

® all polymers go through a glass transition! Some are glassy at operating temperature (Chapter 3.2)
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3.1
The Cohesive Energy



Covalent Bonds vs. Secondary Interactions
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Molecular Orbital Energy Diagrams
® schematic molecular orbital energy diagram for a symmetric diatomic molecule (such as H)
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0
1s(H) + 1s(H)
0 (bonding)

® energy splitting increases with atomic orbital overlap

® number of orbitals preserved but sum of orbital energies (electron density) increases
® bond energy is stabilization of filled bonding orbital o (due to electron delocalization)
® antibonding orbital o* is energetically destabilized but remains empty
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Formation of Carbon-Hydrogen Bonds

® covalent bonds can be described by linear combination of atomic or hybrid orbitals

® single bonds are o-bonds (rotational symmetry) between sp3, sp2, sp, or s orbitals

sp’ E 4H- LCriH 1 ’é‘

H ‘H - simplified LCAO
1 : + 4 P
Sp3 @ 'Ca

Sp3 Sp3
2sp’ — 1s(H)
{ 0” (antibonding)
Zsp
_4_
simplified LCAO
\ A Z L} e (1)

,] Z

3
methane AEc. = 420 ki/mol S bordin)

® due to rotational symmetry of the o-orbital, rotation is free without breaking the bond
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Formation of Carbon-Carbon Single Bonds

® covalent bonds can be described by linear combination of atomic or hybrid orbitals

25p3 151 \E I 25p3
’ AEc.c =347 kJ/mol

_4-b—
0
i e
H\ I:l H ' '
Ty
H H

® due to rotational symmetry of the o-orbital, rotation is free without breaking the bond
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Formation of Carbon-Carbon Multiple Bonds

® 1t bonds between residual p orbitals, node plane along bond, therefore no rotational symmetry

H H
‘C_C'AH
Hi iy AEc.c = 347 kl/mol
ethane
H, __H AEc.c = 614 kl/mol
1=
AE = 267 kl/mol
ethene

® rotation around mt-bounds requires breaking them, but energetically too costly at room temperature
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Rotation Around a Double Bond

® o bond has rotational symmetry relative to carbon.carbon bond axis, but t bond does not

A e EEEEEEEEEE
0
0° 90° 180° 270° 360°
6
H H H H H H H H H H
C=C C—C‘ C=C C—C‘ C=C
H H H H H H H H H H

® rotating mt orbitals by 90° requires breaking the it bond (=260 kJ/mol), disfavorable at r.t.
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Molecular Orbital View of the Carbon-Carbon Double Bond

e simplified and schematic molecular orbital energy diagram of the ethene molecule
H H
c=C
[ J H H ([ ] ] ] (]
E HZC. o(:H2 .O@

0" 0% 2sp’—2sp’  antibonding
m* LUMO
— — 2 "'C‘""% ..... & --
2p VZAEHI 2p §
Z el Z m  2p -2 antibondin
m HOMO P~ P, .
Y g ........ g )

2sp* 2sp*
AR m 2p,+2p, bonding
i L OO
0 0 2sp*+2sp* bonding

® only orbitals of matching symmetry & orientation interact, sp2 with sp?, and p. with p;

® distinct o bond (from two sp2) and it bond (from two p.) with different energy, symmetry

® chemistry ruled by highest occupied, lowest unoccupied molecular orbitals (HOMO, LUMO)
® typically t HOMO and n* LUMO, located between o and ¢* because p, overlap much smaller
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Non-Covalent Interactions

® non-covalent forces dictate polymer conformations and inter-chain interactions.

300 4 - Si-O -
| Coulombic Van der Waals

I?D W @

600 = < > C )
= 2 & e &
I C-F =

D

S 400 o ---- -t =
<P e - () _ )
Y = Hydrogen-Bonding n - stacking
€ 2004 L TR
=

O
A@ H D

non-covalent interactions

e individual non-covalent interactions are of transient nature (thermal energy at r.t.: 2.5 kJ/mol)
® collectively, they compete with or assist each other

® they hence determine geometry and strength of the molecular organisation in the condensed state
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Types of Attractive Non-Covalent Interactions

® Coulombic interactions (charge-charge)

strong (100 - 400 kJ/mol),

longest range force ( o 1),

not directional

® charge-dipole interactions

moderately strong (50 - 200 kJ/mol),

(stronger, when partially covalent (100 - 400 kJ/mol)

long range ( < ],—2)

4

depends on dipole orientation

O-

@

salt bridges

.
.
.
.*

cation-binding hosts

acid-base pairs

(in particular in proteins)

-

OH
H H

solvation
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Types of Attractive Non-Covalent Interactions

® charge-induced dipole

relatively weak,

moderate range force ( r_4)

4

depends on polarizability

dipole-dipole interactions

relatively weak (10 - 50 kJ/mol),

short range ( o< r_6)

4

depends on mutual orientation of
dipole moments

o—&

oxygen in water

HH HH HH HH HH HH
N N N N N N

poly(vinylidene difluoride) PVDF
polar order, dielectricity
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Types of Attractive Non-Covalent Interactions

® dipole-induced dipole

0~ 0~
relatively weak (2 - 30 ki/mol), - © O . @ O
6) i A Al

short range ( o< 1 ),

depends on polarizability solubility of apolar compounds (benzene)
in polar solvents (acetone)

® dispersion

weak (2 - 20 kJ/mol),

short range ( << r_6)

4

mutual synchronisation of
fluctuating, instantaneous dipoles

polyethylene (PE)
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Types of i—m Interactions

® n—Tt interactions are weak (5-50 kJ/mol) and have a short range (£ o< r‘é)

edge-to-face edge-to-face parallel-displaced

® n—m interactions are a combination of dispersive with quadrupolar interactions

® ri—Tt interactions account for the miscibility of some polymers (see Chapter 5)

H

face-to-face

H

H

PPt
3.4-3.8A

H
H




Hydrogen-Bonding - Simplified Overview
e predominant electrostatic interaction of H atom and two more electronegative atoms (usually N and O)
5

— +
electronegative 0 0
atom — < .
(Lewis base) A@ H D electronegative

lone pair unshielded atom
acidic proton

weak H-bonds moderate H-bonds strong H-bonds
typical feature: the donor is often C often neutral D and A often charged D and A
bond strength 2-20 kJ/mol 20-60 kJ/mol 60-170 kJ/mol
D-H---A angle 90-150° 130-180° 170-180°
He.. A 2.2-3.2 A 1.5-2.2 A 1.2-1.5A
bond character electrostatic mostly electrostatic covalent

most relevant for polymer
structure formation

® high directionality (often preferably linear geometry, D-H--:A angle = 180 °) and variable bond strengths
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Hydrogen-Bonding in Biological Systems

structure of water DNA
4
| -O-H
e Ot T H
H,—f TH.qH /o] _
----- I O LM g _—
H.o,'l o .9 I;I 3 NA;H(_\ L, \ HN ..... H’Or\g
E E -N N .
I;I H . </ / \N ..... H »’N.R <+—> </ / \N_H.,- N)I/N
| 14 O\H N 5y o) N _J 5 R
O O T RN RN
H, - HH A o.o - : :
_____ TH B 20 o gL adenine—thymine
O : 0- . H O
[ ~H HHg H
H-g i s
6ﬂ HO‘H(;/H i o H'|E| o-H~N
o T A n N - N
..... II_l,H |-I| 1 O H H‘p......H. /N )ﬂm /N _m
' 0. - O < -H N < N o N
O ! HP PH.A H i [ N )// R /5\/ N C)f R
CHulLe 0o H N N?( .0 N N=XN 1.0
.? : R N,H"' R N‘H“
B ] . H

guanine-cytosine

H
O-H~" Nm
N N
7 — ’H ---- N N
.- &Q e
RT NN H-O
H

e complementary arrangements of hydrogen-bond acceptors/donors for selective binding
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Hydrogen-Bonding in Biological and Synthetic Polymers

® amide groups: simultaneous hydrogen-bonding donor and acceptor

amide group - proteins
O H : O |j| -

\'}‘J\]/N\ﬂ/:\'}‘ N

. o9 " 9 (anti)parallel
H-bonding P :\)OL ; )
acceptor site ﬂJIr EJ\O'( Y B-sheet
O H O H
- = - N A NOAC N\
O AP EJT fﬂkr LN
. N . 0 i 3 \
xu\N, ‘,J\N,@) )LE ON N\/
/ n H g
- +“—> - ~
0 O% ~
e TSR Gy
donor site H H
resonance-enhanced a-helices &
hydrogen bonding -sheets

synthetic polymers

® highly directional and attractive interactions between polymer segments
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van-der-Waals Interactions

® attractive dispersion and repulsion are combined by the Lennard-Jones potential.

® at short distances, electrostatic repulsion between valence electrons (Pauli exclusion principle)

(scales approximately with r—12)

£ ¢ | dominant repulsion H,,‘H
S R | .
U = + | — X T
’/'6 r12 H H . Yo
- _J \. J S
Lennard-Jones potential HH

attractive van-  repulsive
der-Waals term 0
interactions

VO/

dominant attraction ?1)5\ I \
!
van-der-Waals & ) \ &
radius =

® in approximation, secondary interactions in PE are 10 kJ/mol per repeat unit
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Cohesive Energy

* required energy (cohesive energy) for separation of molecules of a liquid or solid: E_,, ~ AH,,, — RT

_A?
4B

o dU 7B
at equilibrium: — =6Ar ' —-12Br =0 — ry=4/— — F , =
Adr A coh

e for polymers, only indirect measurements of £_ ,, e.g. via the compression modulus, K:

oU RE, .
K=-V

0—— ly_y = (see exercise)
ov2 =Ny,

high compressibility low compressibility |
we will meet the

C compression modulus in
. ‘;I. . . Chapter 4.1 again
low compression modulus 259%9°  high compression modulus

CPEL E. ., V,refer to monomer/repeating unit 111



Cohesive Energy of Polyethylene

o forPE: £, =~ 10 kJ/mol per repeating unit

bulk state gas phase
H, H U/)
~~/\;O~ H,' H AT
HH .. S S
HH

AE ~ 10 kJ/mol

high cohesive energy does not exist for polymers

® .. and a degree of polymerization of 100: E_., ~ 1000 kJ/mol
® no evaporation of a polymer by simple heat addition without bond breakage!

® bond breakage occurs before liquid-gas phase transition.

=Pr-L Compare the cohesive energy of a polymer with bond energies (Slides 97-100)! 112



Dominant Intermolecular Interactions in Polymers

e weak compared to covalent bonds of the polymer backbone; determine structure, facilitate processing

bulk state gas phase

dispersion (:

-7t stacking high cohesive energy does not exist for polymers
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Solubility Parameter

® mixing processes are typically driven by entropy, countervailed by enthalpy
(if not specific interactions such as hydrogen-bonding are considered)

e the cohesive energy is then a measure for the solvation enthalpy, AH,,,;,

AH,;, = EVY + E® —2FU2)

coh coh coh

coh coh coh coh

X N
333 OC 1 2 D (2
R ~FD L Q) _ 2\/E< ) ()

thought experiment:
mixing black and grey balls 1) 2) 2
: Brey = H/EY = JE®) = V(5, — &)

coh coh

=PFL V, refers to monomer/repeating unit

. )

solubility parameter

E
(5:::1v/ coh
Vo

!

\ cohesive energy density J
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Hildebrand Solubility Parameter

e solubility is favoured, when 0, ~ 0, and AH, .. is consequently small.

5p01ymer
1/2 1/2
< Opotymer — 2MPa > O0yotymer T 2MPa
no solvent good solvent regime no solvent

e hydrogen-bonding compounds show highest 0, followed by those with permanent dipols and those
interacting only by dispersion forces:

cyclohexane
CsH1 CeHa1s benzene

CsHs acetone ethanol ethylene glycol water
10 MPal/2 50 MPal/2
PE\ PM MA PA 6 PAN
PIB PS PET
PVC
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Measurement of the Hansen Solubility Parameter

® in practice, dissection of the contributions to the solubility parameter according to the Hansen model:
(including specific intermolecular interactions such as H-bonds)

20,
A non-
o ? solvent
25215245 2 polymer for (R > 8MPal/2)
— “h d vdW of interest /
“““ 112
o o [| pBwean
h : hydrogen bondin S . ;
yaros 8 ¢ R<8 MPa2
d : dipolar interactions R 5,
vdW :van-der-Waals interactions . ..
solvents

5vd %%

e estimation of 0 by comparing the effect of different solvents with known o-terms
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Implications

® polymer solubility is of great technological importance

examples: chemical synthesis, processing, gels (soft contact lenses), solvent removal, plasticisation, ...

e measurement of solubility parameter allows to determine the £_ ;, and parameters that depend on it:

2
5PM M

)

coh 533 Jem™3

Vo

(measured: 5.1 GPa)

e 0and E_ , further relate to surface energy, resistance to cavitation, sound propagation, Ts...

surface tension

y=0.75-E,,*> =075 - 5*°V*?

glass transition temperature

cohesive energy density / MJ m-3

300

melting temperature

200

cohesive energy density / MJ m-3
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Measurement of Cohesive Energy via the Solubility Parameter

e covalent bond breakage prohibits entering the gas phase and E__, measurement via heat of evaporation

solution bulk state gas phase

high cohesive energy does not exist for polymers
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